

Redefine Innovative Metering

Technical Datasheet

ZOT PROI | PROV | PROHz

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

www.ziegler-instrument.com

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

ZOT PRO is a series of programmable signal converters used to measure and convert AC electrical signal to DC Voltage or Current analog output for process control application

Product Features

- Measuring Input:
 - ZOT PROHz : Sine wave or distorted wave form of nominal input voltage with fundamental wave
 - ZOT PROI | PROV : AC Voltage/ Current input signal , sine wave or distorted wave form
- Analog Output (Single or dual) : Isolated analog output which can be set onsite to either voltage or current output
- Accuracy : Output signal accuracy Class 0.2 as per International Standard IEC/EN 60 688
- **Programmable Input /Output :** The converter can be programmed onsite using front key & display or through programming port (COM) or through RS 485
- LED Indication : LED indication for power on and output type (Current output : Red LED, Voltage output : Green LED)
- **Display Module (Optional) :** Optional 7 segment LCD display with backlit & keypad for displaying measured parameters & onsite configuration of input/output
- **RS485 Communication (Optional) :** Optional RS485 communication is available for reading measured parameters & onsite configuration of input/output

Symbol	For PROV/ PROI	For PROHz
Х	Input AC Voltage / AC Current	Input Frequency
XO	Start value of input	Start value of input
X1	Elbow value of input	Elbow value of input
X2	End value of input	End value of input
Y	Output DC Voltage / DC Current	Output DC Voltage / DC Current
YO	Start value of output DC Voltage / DC Current	Start value of output DC Voltage / DC Current
Y1	Elbow value of output DC Voltage / DC Current	Elbow value of output DC Voltage / DC Current
Y2	End value of output DC Voltage / DC Current	End value of output DC Voltage / DC Current
R∾	Rated value of output burden	Rated value of output burden
FN or UN	Nominal Frequency	Nominal Voltage

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

Technical Specifications

$57V \le U_N \le 500 V$
57V to 400 kV
4566 Hz
< 0.6 VA at U _N
$1.2 * U_N$ continuously,
$2 * U_N$ for 1 second, repeated 10 times at 10 minute intervals. (Maximum 300V with power supply powered from measuring input).
full scale output for desired input with the help of
$1 \text{ A} \leq I_N \leq 5 \text{ A}$
1 A to 9999A
4566 Hz
< 0.2 VA at I _N
1.2 * I _N continuously,
$10 * I_N$ for 3 second, repeated 5 times at 5 minute intervals.
50 * I_N for 1 second, repeated 1 time at 1 hour interval (max 250 A).
full scale output for desired input with the help of
45Hz to 55Hz, 48Hz to 52Hz, 55Hz to 65Hz, 45Hz t 65Hz (min span 4Hz)
$57V \le U_N \le 500 V$
< 0.6 VA max
1.2 U_N continuously, 2 U_N for 1 second, repeated 10 times at 10 minute intervals (maximum 300V with power
supply powered from measuring input)
supply powered from measuring input)
supply powered from measuring input) Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming)
Load independent DC Voltage or DC Current (Onsite selectable through DIP switches &
Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming)
Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) 020mA / 420mA OR 010V 0 ≤ R ≤ 15V/Y2
Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) 020mA / 420mA OR 010V $0 \le R \le 15V/Y2$ $Y2/(2 mA) \le R \le \infty$
 Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) 020mA / 420mA OR 010V 0 ≤ R ≤ 15V/Y2 Y2/(2 mA) ≤ R ≤ ∞ ≤ 1.25 * Y2 with current output
 Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) 020mA / 420mA OR 010V 0 ≤ R ≤ 15V/Y2 Y2/(2 mA) ≤ R ≤ ∞ ≤ 1.25 * Y2 with current output ≤ 100 mA with voltage output
Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) $020mA/420mA OR 010V$ $0 \le R \le 15V/Y2$ $Y2/(2 mA) \le R \le \infty$ $\le 1.25 * Y2$ with current output $\le 100 mA$ with voltage output $< 1.25 * Y2$ with voltage output $< 1.25 * Y2$ with voltage output
 Load independent DC Voltage or DC Current (Onsite selectable through DIP switches & programming) 020mA / 420mA OR 010V 0 ≤ R ≤ 15V/Y2 Y2/(2 mA) ≤ R ≤ ∞ ≤ 1.25 * Y2 with current output ≤ 100 mA with voltage output

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

Auxiliary Power Supply		
AC/DC Auxiliary Supply	60V 300 VAC-DC ± 5% or 24 60 VAC-DC ± 10%	
AC Auxiliary supply frequency range	40 to 65 Hz	
Auxiliary supply consumption		
60V300 VAC-DC	<u><</u> 8VA for Single output	
	< 10VA for Dual output	
24V60 VAC-DC	S VA for Single output	
	\leq 6 VA for Dual output	
Accuracy (Acc. To IEC / EN 60688)		
Reference Value	Output end Value Y2 (Voltage or Current)	
Basic Accuracy	0.2 * C	
Reference Conditions for Accuracy		
Ambient temperature	23°C +/- 1°C	
Pre-conditioning	30 min acc. to IEC / EN 60 688	
Input Variable	Rated Voltage / Rated Current	
Input waveform	Sinusoidal, Form Factor 1.1107	
Input signal frequency	50 or 60Hz	
Auxiliary supply voltage	At nominal range	
Output Load	$Rn = 7.5 V / Y2 \pm 1\%$ With DC current output	
	signal;	
	Rn = Y2 / 1 mA± 1% With DC voltage output	
	signal	
Miscellaneous	Acc. to IEC / EN 60 688	
Additional Error		
Temperature influence	± 0.2% /10°C	
Influence of Variations		
As per IEC / EN 60688 standard	< 30min	
Output stability		
Safety		
Protection Class	II (Protection Isolated, EN 61010)	
Protection	IP 40, housing according to EN 60529	
	IP 20 ,terminal according to EN 60529	
Pollution degree	2	
Installation Category	III	
Insulation Voltage	1min. (EN 61010-1)	
	7700V DC, Input versus outer surface	
	5200V DC, Input versus all other circuits	
	5200V DC, Auxiliary supply versus outer surface	
	and output	
	690V DC, Output versus output versus each other	
	versus outer surface	
Installation Data		
Mechanical Housing	Lexan 940 (polycarbonate) Flammability Class V-0	
	acc. To UL 94, self extinguishing, non dripping, free	
	of halogen	
Mounting position	Rail mounting / wall mounting	
Weight	Approx. 0.4kg	

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

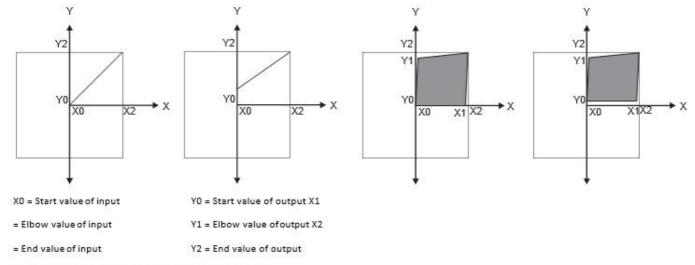
Connection Terminal	
Connection Element	Conventional Screw type terminal with indirect wire pressure
Permissible cross section of the connection lead	\leq 4.0 mm ² single wire or 2 x 2.5 mm ² fine wire
Environmental	
Nominal range of use	0 °C23 °C 45 °C (usage Group II)
Storage temperature	-40 °C to 70 °C
Relative humidity of annual mean	≤ 75%
Altitude	2000m max
Ambient tests	
EN 60068-2-6	Vibration
Acceleration	± 2 g
Frequency range	1015010Hz, rate of frequency sweep: 1 octave/minute
Number of cycles	10, in each of the three axes
EN 60068-2-7	Shock
Acceleration	3 x 50 g
	3 shocks in each direction
EN 60 068-2-1/-2/-3	Cold, Dry, Damp heat
IEC 61000-4-2/-3/-4/-5/-6 EN 55 011	Electromagnetic compatibility.

Accuracy : Factor C (The highest value applies if calculated C is less than 1,then C=1 applies)

For

For

Linear characteristics:


Output Characteristics :

$$C = \frac{1 - \frac{Y0}{Y2}}{1 - \frac{X0}{X2}}$$
 or C=1

Bent characteristics:

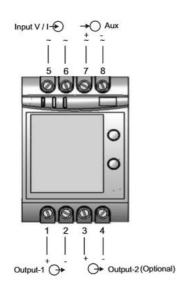
$$X0 \le X \le X1 \qquad C = \frac{Y1 - Y0}{X1 - X0} \cdot \frac{X2}{Y2} \text{ or } C = 1$$

$$X1 \le X \le X2 \qquad C = \frac{1 - \frac{Y1}{Y2}}{C} \text{ or } C = 1$$

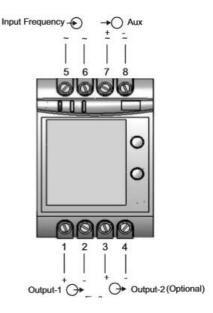
$$C = \frac{1 - \frac{Y1}{Y2}}{1 - \frac{X1}{X2}}$$
 or C=1

Note: End value(Y2) of output cannot be changedonsite.

4

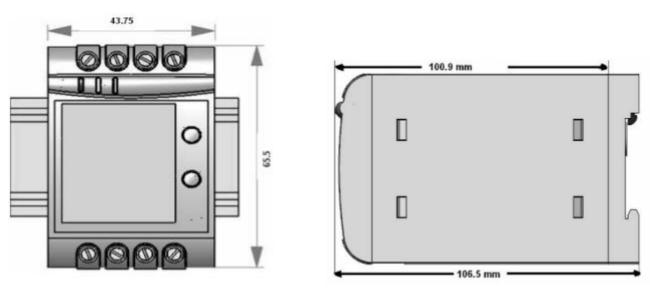

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

LED Indication


ON LED	Aux.supply healthy condition	Green LED continuous ON
	Output1 voltage selection	Green LED continuous ON
O/P1 LED	Output1 Current selection	Red LED continuous ON
	Output2 voltage selection	Green LED continuous ON
O/P2 LED	Output2 Current selection	Red LED continuous ON

Connection Diagram and Installation

Connection	Terminal	details
Measuring input	~	5
	~	6
Auxilliary Power	~ , +	7
supply	~,-	8
Measuring output - 1	+	1
	-	2
Measuring output - 2	+	3
	-	4



PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

Dimensions

Programming

Programming of converter can be done in three ways :

1) Programming Via Front LCD & two keys

2) Programming Via optional RS485(MODBUS) communication port (Device address, PT Ratio, CT Ratio, Password, communication parameter, Output Type & simulation mode can be programmed)

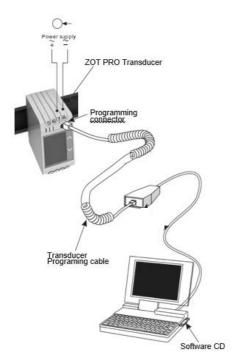
3) Programming Via Programming port available at the front of converters using optional Adapter

Programming Via Programming port (COM): A PC with RS232C interface along with the programming cable and the configuration software are required to Program the converter.

The connections between

PC \iff Comm. cable \iff ZOT PRO converter

The power supply must be applied to converter before it can be programmed, the Configuration software is supplied on a CD The programming cable adjusts the signal level and provides the electrical insulation between the PC and ZOT PRO converters **Configuring converter** : To configure ZOT PRO converter Input / output one of the three programming methods can be adapted along with mechanical switch setting (DIP switch setting on PCB).


DIP Switch Setting for OUTPUT : Type of output (current or voltage signal) has to be set by DIP switch. For programming of DIP switch the user needs to open the converter housing & set the DIP switch located on PCB to the desired output type Voltage or Current. Output range changing is not possible with DIP switch setting.

Refer table aside for DIP switch setting.

The four pole DIP switch is located on the PCB in the ZOT PRO converter

DIP Switch Setting	Type of Output Signal
ON 00 00 1234	load-independent current
ON 1234	load-independent voltage

PROGRAMMABLE ELECTRICAL SIGNAL CONVERTERS

Ordering Information

Converter ZOT PROI PROV	(✓)	Converter ZOT PROHz	(√)
Input Signal		Input Signal	
Voltage (Range: 57V to 500V)		Frequency	
Current (Range: 1A to 5A)		4565Hz	
Note : Input Ranges are onsite programmable.		Note: Input frequency can be programmed onsite from 45Hz to 65 Hz but minimum span is 4Hz	
Frequency of Input (50 Hz / 60 Hz)		Auxiliary Supply	
Auxiliary Supply		High Aux (60V 300VAC-DC)	
High Aux (60V300VAC-DC)		Low Aux (24V 60VAC-DC)	
Low Aux (24V60VAC-DC)			
Output 1 (Standard Ranges)		Output 1 (Standard Ranges)	
Current = 020 mA		Current = 020 mA	
Output 2 (Standard Ranges)		Output 2 (Standard Ranges)	
		Voltage = 010V	
Voltage = 0 10V		With Display	
With Display			
Without RS-485		Without RS- 485	
Without Comm. cable		Without Comm. cable	

Note : End value of output can not be changed onsite.

Ziegler Instrumentation UK Ltd.

Central Buildings, Woodland close old woods Trading Estate, Torquay Devon, TQ2 7BB, United Kingdom

+441803 616 800 | info@ziegler-instrument.com | ziegler-instrument.com